
The ABC of Computational Text Analysis

#6 Learning Regular Expressions

Alex Flückiger
Faculty of Humanities and Social Sciences

University of Lucerne

7 April 2022

1

Recap last Lecture

well-solved assignment #1 �

counting words �
particular words or entire vocabulary

preprocessing and cleaning +

example solution

2

https://github.com/aflueckiger/KED2022/blob/main/assignments/assignment_1/flueckiger_KED2022_1_solutions.sh

Outline

introducing regular expression ✨

practicing the writing of patterns �

3

Text as Pattern

4 . 1

Formal Search Patterns

How to extract all email addresses in a text collection?

Please contact us via info@organization.org.

For specific questions ask Mrs. Green (a.green@mail.com).

Reach out to support@me.ch

7 Solution: Write a single pattern to match any valid email adress

[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,} # match any email address (case-insensitive)

4 . 2

What are patterns for?
�nding û

extracting �

removing/cleaning e

replacing î

… speci�c parts in texts

4 . 3

Data Cleaning is paramount!

4 . 4

What are Regular Expressions (RegEx)?
RegEx builds on two classes of symbols

literal characters and strings

letters, digits, words, phrases, dates etc.

meta expressions with special meaning

e.g., \w represents alphanumeric characters

[Cc]o+l → Col, col, Cool, coool …

akin to regular languages

4 . 5

Finding + Extracting

extended globally search for regular expression and print (egrep)

tool to �lter/keep matching lines only

check a regular expression quickly
echo "check this pattern" | egrep "pattern"

egrep "yes" file.txt # search in a specific file
egrep -r "yes" folder # search recursively within folder

egrep "yes" *.txt # keep lines containing pattern (yes) across txt-files
egrep -i "yes" *.txt # dito, ignore casing (Yes, yes, YES ...)
egrep -v "noisy" *.txt # do NOT keep lines containing noisy

extract raw match only to allow for subsequent counting
egrep -o "only" *.txt # print match only instead of entire line
egrep -h "only" *.txt # suppress file name

4 . 6

Quanti�ers

repeat preceding character X times

? zero or one

+ one or more

* zero or any number

{n}, {m,n} a speci�ed number of times

⚠ Do not confuse regex with Bash wildcards!

egrep -r "Bundesrath?es" # match old and new spelling
egrep -r "a+" # match one or more "a"
egrep -r "e{2}" # match sequence of two "e"

4 . 7

Character Sets

[...] any of the characters between brackets

any vowel: [auoei]

any digit: [0-9]

any letter: [A-Za-z]

[^...] any character but none of these (negation)

anything but the vowels: [^auoei]

match the capitalized and non-capitalized form
egrep -r "[Gg]rüne"

match sequences of 3 vowels
egrep -r [aeiou]{3}

extract all bigrams (sequence of two words)
4 . 8

Special Symbols

. matches any character (excl. newline)

\ escapes to match literal

\. means the literal . instead of <any symbol=

\w matches any alpha-numeric character

same as [A-Za-z0-9_]

\s matches any whitespace (space, newline, tab)

same as [\t\n]

match anything between brackets
egrep -r "\(.*\)"

4 . 9

The power of .* …

matches any character any times

4 . 10

More Complex Examples

extract basename of URLs
egrep -ro "www\.\w+\.[a-z]{2,}"

extract valid email adresses (case-insensitive)
egrep -iro "[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}" **/*.txt

4 . 11

Combining RegEx with Frequency Analysis
something actually useful

count political areas by looking up words ending with "politik"
egrep -rioh "\w*politik" **/*.txt | sort | uniq -c | sort -h

count ideologies/concepts by looking up words ending with "ismus"
egrep -rioh "\w*ismus" **/*.txt | sort | uniq -c | sort -h

4 . 12

Start simple,

add complexity subsequently.

4 . 13

In-class: Exercise

1. Use the command line to navigate to the local copy of the Github repository KED2022 and make sure it is up-to-

date with git pull. Change in to the directory materials/data/swiss_party_programmes/txt.

2. Use egrep to extract all uppercased words like UNO, OECD, SP and count their frequency.

3. Use egrep to extract all plural nouns with female endings e.g. Schweizerinnen (starting with an uppercase letter,

ending with innen, and any letter in between). Do the same for the male forms. Is there a qualitative or a

quantitative difference between the gendered forms?

Some not so random hints
piping with |
sort
uniq -c
egrep -roh **/*.txt

4 . 14

In-class: Solution

1. Use egrep to extract all uppercased words like UNO, OECD, SP and count their frequency.

egrep -roh "[A-Z]{2,}" **/*.txt | sort | uniq -c | sort -h

2. Use egrep to extract all plural nouns with female endings e.g. Schweizerinnen (starting with an uppercase letter,

ending with innen, and any letter in between). Do the same for the male forms. Is there a qualitative or a

quantitative difference between the gendered forms?

egrep -roh "[A-Z][a-z]+innen\b" **/*.txt | sort | uniq -c | sort -h

egrep -roh "[A-Z][a-z]+er\b" **/*.txt | sort | uniq -c | sort -h (there is no way with regular expression to extract only

nouns of the male form but not Wasser and the like. For this, you have to use some kind of machine learning.)

4 . 15

Replacing + Removing

stream editor (sed)

advanced �nd + replace using regex

sed "s/WHAT/WITH/g" file.txt

sed replaces any sequence, tr only single symbols

echo "hello" | sed "s/llo/y/g" # replace "llo" with a "y"

by setting the g flag in "s/llo/y/g",
sed replaces all occurences, not only the first one

4 . 16

Contextual Replacing

reuse match with grouping

de�ne a group with parentheses (group_pattern)

\1 equals the expression inside �rst pair of parentheses

\2 expression of second pair

…

swap order of name (last first -> first last)
echo "Lastname Firstname" | sed -E "s/(.+) (.+)/\2 \1/"

matching also supports grouping
match any pair of two identical digits
egrep -r "([0-9])\1"

4 . 17

More Meta-Symbols
\b matches word boundary

word\b does not match words

^ matches begin of line and $ end of line

^A matches only A at line start

| is a disjunction (OR)

(Mr|Mrs|Mr\.|Mrs\.) Green matches alternatives

4 . 18

Greediness Trap

greedy ~ match the longest string possible

quanti�ers * or + are greedy

non-greedy by excluding some symbols

[^EXCLUDE_SYMBOLS] instead of .*

greedy: an apple, other apple
echo "an apple, other apple" | egrep "a.*apple"

non-greedy: an apple
echo "an apple, other apple" | egrep "a[^,]*apple"

4 . 19

Assignment #2 ✍
get/submit via OLAT

starting tomorrow

deadline 15 April 2022, 23:59

use forum on

subscribe to get noti�cations

ask friends for support, not solutions

OLAT

4 . 20

https://lms.uzh.ch/auth/RepositoryEntry/16703095856

In-class: Exercises I
1. Use egrep to extract capitalized words and count them. What are the most frequent nouns?

2. Use egrep to extract words following any of these strings: der die das. Hint: Use a disjunction.

3. Do the self-check on the next slide.

4. Use sed -E to remove the table of content, the footer and the page number in the programme of the Green Party.

Check the corresponding PDF to get a visual impression and test your regular expression with egrep �rst to see if

you match the correct parts in the document.

4 . 21

In-class: Solution I

1. Use egrep to extract capitalized words and count them. What are the most frequent nouns?

egrep -roh "[A-Z][a-z]+" **/*.txt | sort | uniq -c | sort -h

2. Use egrep to extract words following any of these strings: der die das. Hint: Use a disjunction.

egrep -roh "(der|die|das) \w+" **/*.txt

3. Use sed -E to remove the table of content, the footer and the page number in the programme of the Green Party.

Check the corresponding PDF to get a visual impression and test your regular expression with egrep �rst to see if

you match the correct parts in the document.

cat gruene_programme_2019.txt | sed "1,192d" | sed -E "s/^Wahlplattform.*2023$//g" | sed -E "s/^[0-9]+$//g"

4 . 22

In-class: Self-Check
equivalent patterns

a+ == aa* # "a" once or more than once
a? == (a|_) # "a" once or nothing
a{3} == aaa # three "a"
a{2,3} == (aa|aaa) # two or three "a"
[ab] == (a|b) # "a" or "b"
[0-9] == (0|1|2|3|4|5|6|7|8|9) #any digit

4 . 23

In-class: Exercise II

1. Count all the bigrams (sequence of two words) using character sets and quanti�ers. What about trigrams (three

words)?

2. Extract the words following numbers (also consider numbers like: 1'000, 1,000 or 5%). Then, count all the

words while excluding the numbers themselves. Hint: Pipe another grep to remove the digits.

3. You are ready to come up with your own patterns…

4 . 24

In-class: Solution II

1. Count all the bigrams (sequence of two words) using character sets and quanti�ers. What about trigrams (three

words)?

egrep -hoir "\b[a-z]+ [a-z]+\b" | sort | uniq -c | sort -h

egrep -hoir "\b[a-z]+ [a-z]+ [a-z]+\b" | sort | uniq -c | sort -h

2. Extract the words following numbers (also consider numbers like: 1'000, 1,000 or 5%). Then, count all the

words while excluding the numbers themselves. Hint: Pipe another grep to remove the digits.

egrep -rhoi "[0-9][0-9,'%]+ [a-z]+" | egrep -io "[a-z]+" | sort | uniq -c | sort -h

Alternative: egrep -rhoi "[0-9][0-9,'%]+ [a-z]+" | sed -E "s/[0-9][0-9,'%]+//g" | sort | uniq -c | sort -h

4 . 25

In-class: Exercise III

1. Since you know about RegEx, we can use a more sophisticated tokenizer to split a text into words. What is the

difference between the old and new approach? Test it and check the helper page with man.

new, improved approach
cat text.txt | tr -sc "[a-zäöüA-ZÄÖÜ0-9-]" "\n"

old approach
cat text.txt | tr " " "\n"

4 . 26

More Resources

required

Ben Schmidt. 2019. .

 of this course

highly recommended

Nikolaj Lindberg. .

online regular expression editor

 to write and check patterns

Regular Expressions

Cheatsheet

egrep for Linguists

regex101

4 . 27

https://github.com/HumanitiesDataAnalysis/HDA19/blob/master/Handouts/01-regex.pdf
https://aflueckiger.github.io/KED2022/materials/cheatsheet_command_line.pdf
https://stts.se/egrep_for_linguists/egrep_for_linguists.pdf
https://regex101.com/

Questions?

4 . 28

